Befund:
Patient:
Geb.-Datum/Geschl.:
Probeneingang:
Probenentnahme:

2509004860_KKM Christine Testmann 22.12.1978 / W

MVZ Institut für Mikroökologie GmbH Postfach 1765 D-35727 Herborn

Telefon: 02772 981-0 Telefax: 02772 981-151 E-Mail: info@ifm-herborn.de www.ifm-herborn.de

MVZ Institut für Mikroökologie GmbH - Postfach 1765 - D-35727 Herborn

Herrn Dr. med.Stefan Heilmann Auf den Lüppen 8 35745 Herborn Hotline für Ärzte: 0 02772 981166

Unsere Hotline-Zeiten finden Sie unter ifm-herborn.de/hotline oder scannen Sie den OR-Code.

Diese Hotline wird ausschließlich von erfahrenen ärztlichen Kollegen bedient.

Bitte beachten: Gespräche mit Patienten sind nicht möglich.

Mikrobiota KyberBiom	-Diagnostik 1	Befund: Patient:	2509004860_KKM Christine Testmann	vom: geb. am: 22.12.1978
		NEU!	Kompakt-B	eurteilung
Y	Immunmodulierende Mikrobiota	Eingesch	nränktes Training des Immun	systems
O	Protektive Mikrobiota	Barriere-	und Schutzfunktion reduzier	t
	Mukonutritive Mikrobiota		ende Ernährung des Darmep reduziert	oithels, Stimulation der Mukusbildung
(A)	Ballaststoffabbauende Mikrobiota	Gute Spa	altungsfähigkeit komplexer Ko	ohlenhydrate
	Neuroaktive Mikrobiota	Eingesch	nränktes analgetisches und s	pasmolytisches Potenzial
	Proteolytische Mikrobiota	Geringes Substanz	: Risiko für Bildung leber- und zen	d schleimhautbelastender
	Hefen/Schimmelpilze		/kosebedingten Trigger für Al ngsbeschwerden	llergien und
	Gesamtkeimzahl	Reduzier	tes Potenzial zur Stabilisieru	ng der Darmgesundheit
	100% 0%	Resilie	nz-Index	
75%	63%	Eingesch	nränkte Widerstandskraft der	Darmmikrobiota
	50%			

FODMAP-Typ

Angepasste Ernährung zur Linderung gastrointestinaler Beschwerden angezeigt

Mikrobiota-Diagnostik Probenmaterial: Stuhl Befund: 2509004860 KKM vom: Probenentnahme: KyberBiom Christine Testmann geb. am: 22.12.1978 Patient: Immunmodulierende Mikrobiota **Protektive Mikrobiota Mukonutritive Mikrobiota** (4) Ballaststoffabbauende Mikrobiota **Neuroaktive Mikrobiota** Proteolytische Mikrobiota Hefen/Schimmelpilze Resultat Einheit 10² 10³ 10⁴ 10⁵ 10⁶ 10⁷ 10⁸ 10⁹ 10¹⁰ 10¹¹ 10¹² Escherichia coli 4x10⁶ KBE/g =1x10 ⁶ KUL normal Enterococcus spp. 2x10⁵ KBE/g 1 leicht vermindert KUL Bacteroides spp. ✓ 6x10⁹ Kopien/g normal =1x10 ⁹ PCR ✓ Bifidobacterium spp. =1x10 ⁸ 2x10⁸ Kopien/g normal PCR 5x10⁴ KBE/g ♣ Lactobacillus spp. 1 leicht vermindert =1x10 ⁵ KUL • ļ H2O2-Lactobacillus 5x10⁴ KBE/g leicht vermindert =1x10 ⁵ KUL Faecalibacterium prausnitzii 7x10⁹ Kopien/g ✓ normal >=1x10 ⁹ PCR Akkermansia muciniphila <1x10⁴ Kopien/g • 111 =1x10 ⁸ stark verminder PCR ✓ PCR Bifidobacterium adolescentis =1x10 ⁸ 3x10⁸ Kopien/g normal ✓ Ruminococcus bromii 4x10⁸ Kopien/g normal =1x10 ⁸ PCR, * 3x10⁸ Kopien/g Bifidobacterium adolescentis =1x10 ⁸ PCR normal Lactobacillus plantarum Ν nicht nachweisba PCR, * E. coli Biovare <1x10⁴ KBE/g <1x10 ⁴ KUL Proteus spp. <1x10⁴ KBE/g normal ✓ Klebsiella spp. <1x10⁴ KBE/g normal KUL <1x10 ⁴ KUL Pseudomonas spp. <1x10⁴ KBE/g normal <1x10⁴ KBE/g ✓ <1x10 ⁴ Enterobacter spp. normal ✓ <1x10 ⁴ Citrobacter spp. <1x10⁴ KBE/g normal KUL ✓ Clostridium spp. PCR 5x10⁴ Kopien/g normal <5x10² KBE/g Hefen =1x10 ³ KUL normal 0 KUL, * Schimmelpilze 6x10¹⁰ Kopien/g 1 =1x10 11 Gesamtkeimzahl PCR leicht vermindert 10³ 10⁴ 10⁵ 10⁶ 10⁷ 10⁸ 10⁹ 10¹⁰ 10¹¹ 10¹² Stuhl-Konsistenz breiig Stuhl-pH 6,5 normal <=6,5 PH, 8) 4,5 5,5 7,0 8,5 5,0 6,5 7,5 8,0 KUL (kultureller Nachweis)
*nicht akkreditierter Parameter PCR (Polymerase Kettenreaktion) PH (farbmetrisch mit Indikatorstäbchen) 8) Achtung: Referenzbereiche geändert Referenzbereich erhöht

Dieser Befund wurde von der Laborleitung elektronisch freigegeben

verminder

Mikrobiologische Diagnostik

Die Gesamtzellzahl aller kultivierbaren Mikroorganismen war vermindert.

Selbst bei ansonsten im Normbereich liegenden Zellzahlen der untersuchten Mikrobiota deutet dies auf eine Störung des gastrointestinalen Milieus hin. Die Kolonisationsresistenz gegenüber pathogenen Bakterien und Hefen ist nicht mehr gesichert.

Die **immunmodulierende Mikrobiota** ist vermindert. Ein Training des Immunsystems findet nur ungenügend statt. Weiterhin ist die **protektive Mikrobiota** leicht vermindert, womit die Barrierefunktion nur bedingt gewährleistet ist.

Die Befundkonstellation der **mukonutritiven Mikrobiota** lässt auf eine ausreichende Ernährung des Darmepithels, jedoch eine mangelnde Stimulation der Mukusproduktion schließen. Es besteht ein erhöhtes Risiko einer Mukusinsuffizienz und damit einer nachlassenden Schleimhautprotektion.

Die Befundkonstellation der **ballaststoffabbauenden Mikrobiota** lässt auf eine ausreichende Spaltungsfähigkeit von komplexeren Kohlenhydraten, insbesondere von resistenter Stärke schließen.

Die Befundkonstellation der **neuroaktiven Mikrobiota** lässt auf eine verminderte Produktion von GABA schließen. Bifidobacterium adolescentis und Lactobacillus plantarum sind Leitorganismen für die Bildung von GABA im Darm. Auf Grund unserer westlichen Ernährungsweise ist L. plantarum häufig nur noch unzureichend vorhanden.

Die proteolytische Mikrobiota liegt im Normbereich und Hefen sind nicht nachweisbar.

Schimmelpilze sind nicht gewachsen.

Der **pH-Wert** der Stuhlprobe liegt im Normbereich.

Der Resilienz-Index ist vermindert. Dies deutet darauf hin, dass Störungen der Mikrobiota schon länger vorliegen, oder dass starke und/oder wiederholte Störeinflüsse wie z.B. Antibiotikagaben erfolgten.

Es wurde der FODMAP-Typ 3 nachgewiesen.

Der FODMAP-Typ ist nur bei Vorliegen unklarer abdomineller Beschwerden/ Reizdarmbeschwerden von Bedeutung. Für Patienten mit ausschließlich extraintestinaler Beschwerdesymptomatik ist eine an den FODMAP-Typ angepasste Ernährung nicht erforderlich.

Kontrolluntersuchung

Eine erneute **KyberBiom** Untersuchung ist 6 Monate nach Therapiebeginn zu empfehlen. Bitte kreuzen Sie auf dem Auftragsformular die Entwicklung des klinischen Beschwerdebildes an. Außerdem benötigen wir Angaben zur bereits durchgeführten Therapie.

Weiterführende Diagnostik

Da allergische Erkrankungen oft mit Störungen der Schleimhautfunktion und -integrität verbunden sind, empfehlen wir diese labordiagnostisch abzuklären. Die Stuhluntersuchung folgender Parameter kann sinnvoll sein:

alpha-1 Antitrypsin
Zonulin
Calprotectin
Eosinophiles Protein X (EPX)
Sekretorisches IgA

Bei Beschwerden im HNO-Bereich kann die **Beurteilung der Rachenmikrobiota (a3)** zielführend sein.

Zur weiteren Diagnostik der Infektanfälligkeit empfiehlt sich die Bestimmung des Vitamin D-Spiegels (v11) im Blut.

Medizinischer Hintergrund zum KyberBiom

Immunmodulierende Mikrobiota

Die **immunmodulierende Mikrobiota** ist ständiger Trainingspartner des Immunsystems und mitverantwortlich für ein schlagkräftiges Immunsystem und eine angemessene Immuntoleranz. Zur immunmodulierenden Mikrobiota zählen apathogene E. coli und Enterococcus-Spezies.

Protektive Mikrobiota

Die **protektive Mikrobiota** hält die Kolonisationsresistenz im Darm aufrecht und verhindert die Ansiedlung unerwünschter Erreger. Zur protektiven Mikrobiota zählen Bacteroides-, Bifidobacterium- und Lactobacillus-Spezies. Insbesondere die Wasserstoffperoxid-produzierenden Laktobazillen hemmen das Wachstum potentiell pathogener Bakterien.

Mukonutritive Mikrobiota

Schlüsselorganismen der **mukonutritiven Mikrobiota** sind Akkermansia muciniphila und Faecalibacterium prausnitzii. Faecalibacterium prausnitzii ernährt die Darmschleimhaut mit Buttersäure und fördert ihre Integrität, Akkermansia muciniphila regt die Neubildung des intestinalen Mukus an.

Ballaststoffabbauende Mikrobiota

Die **ballaststoffabbauende Mikrobiota** unterstützt die mukonutritive Mikrobiota, indem sie lange Ballaststoffketten aufbricht und damit Nährstoffe für die Buttersäureproduktion zur Verfügung stellt. Gleichzeitig regt die ballaststoffabbauende Mikrobiota andere Bakterienarten an, komplexe Kohlenhydrate zu verwerten. Zur ballaststoffabbauenden Mikrobiota zählen Ruminococcus bromii und Bifidobacterium adolescentis.

Neuroaktive Mikrobiota

Die **neuroaktive Mikrobiota** produziert γ-Aminobuttersäure (GABA), einen wichtigen inhibitorischen Neurotransmitter im Zentralen Nervensystem. Enterale GABA wirkt über Rezeptoren im Darm auf die Darm-Hirn-Achse, das Immunsystem und das viszerale Schmerzempfinden. Bifidobacterium adolescentis und Lactobacillus plantarum sind Vertreter der neuroaktiven Mikrobiota.

Proteolytische Mikrobiota

Die **proteolytische Mikrobiota** baut Proteine ab und bildet dabei zum Teil Stoffwechselprodukte, die die Verdauung stören, die Leber belasten und karzinogen wirken. Beim Protein-Abbau können außerdem Gase entstehen, die Meteorismus verursachen. Zur proteolytischen Mikrobiota zählen vor allem die Bakteriengattungen der Enterobacteriaceae.

Hefen

Hefen und Schimmelpilze können die Allergieneigung steigern und Verdauungsbeschwerden hervorrufen, wenn sie in großen Zellzahlen vorkommen. Außerdem begünstigen sie vulvovaginale Candidosen.

Befundbericht: 2509004860_KK - TESTFRAU,EVA

Der Resilienz-Index erfasst den ökologischen Zustand der Mikrobiota und damit die Fähigkeit, Störungen zu absorbieren. Ist der Index hoch, kann die Mikrobiota in Phasen der Veränderung wesentliche Strukturen und Funktionen aufrechterhalten. Bei einem niedrigen Resilienz-Index ist die Ökologie der Mikrobiota gestört und ungünstige Einflüsse können schnell zu klinischen Symptomen führen. Er setzt sich zusammen aus den einzelnen Bestandteilen des KyberBiom, die nach ihrer Bedeutung gewichtet werden.

FODMAPs sind Zuckerarten und Polyole, die Symptome eines Reizdarmsyndroms hervorrufen können.

Der FODMAP-Typ ist nur bei Vorliegen unklarer abdomineller Beschwerden/ Reizdarmbeschwerden von Bedeutung. Für Patienten mit ausschließlich extraintestinaler Beschwerdesymptomatik ist eine an den FODMAP-Typ angepasste Ernährung nicht erforderlich.

Mit freundlichen Grüßen

Dieser Befund wurde von der Laborleitung elektronisch freigegeben

Personalisierte komplementärmedizinische Therapievorschläge

Die Therapievorschläge zur Mikrobiologischen Therapie basieren sowohl auf den Ergebnissen der Stuhldiagnostik als auch den uns vorliegenden Angaben zu Diagnosen bzw. klinischem Bild.

Bitte berücksichtigen Sie bei den hier genannten Vorschlägen individuelle - auch temporäre - Kontraindikationen und eventuelle Arzneimittel-Wechselwirkungen.

Mikrobiologische Therapie

Bitte or	ach rechts.		
14 Tage	3 Monate	4 - 6 Monate	
Synerga	Pro-Symbioflor Immun	Pro-Symbioflor Immun	
1 x tgl. 5 ml	2 x tgl. 2 Tropfen, Steigerung um tgl. 2 x 1-2 Tropfen auf 2 x tgl. 20 Tropfen	1 x tgl. 15 – 20 Tropfen	
		Symbioflor 1	
	2 x tgl. 20 Tropfen		

^{*} Synerga enthält Laktose. Patienten mit Laktoseintoleranz oder FODMAP-Unverträglichkeit könnten empfindlich reagieren. In diesen Fällen ist alternativ Colibiogen-Lösung in identischer Dosierung zu empfehlen.

Zusätzlich ist, in Abhängigkeit vom klinischen Bild, die Anwendung mikrobiotischer Externa zu empfehlen, z. B. **Ibiotics med** oder **Dermabiogen**.

Milieustabilisierende Therapie

In Anbetracht der Messergebnisse ist die Gabe von Milchsäurebakterien indiziert. Diese empfehlen wir bereits ab Beginn der therapeutischen (so auch parallel zu evtl. immunmodulatorischen) Maßnahmen. In den hier genannten Produkten sind probiotische Stämme enthalten, die in Studien bei **Neurodermitis** eine Wirkung gezeigt haben.

Bitte wählen Sie eines der aufgeführten, vergleichbaren Produkte aus

Anwendungsdauer	Probiotische Stämme	Produkt
	Bifidobacterium longum, Lactobacillus aci- dophilus, L. rhamnosus, L. casei	Bactoflor Basis
2 – 3 Monate	Bifidobacterium bifidum, B. lactis, L. acidophilus, L. casei, L. fermentum, L. plantarum, L. reuteri, S. thermophilus, E. faecium	Pascoflorin

Weitere therapeutische Optionen bei Neurodermitis

z.B. Orthomolekulare Therapie, Phytotherapie u.a.

Orthomolekulare Therapie

z.B. Orthomol immun Granulat – Vit. A, B-Komplex, C, D u. weitere, Mineralstoffe und Spurenelementen

Phytotherapie –auch als Externa

z.B. Epogam Weichkapseln 500 mg/1000mg (Nachtkerzenöl)

Ekzevowen Creme (Mahonie und Stiefmütterchen)

Rubisan Salbe N oder Creme (Berberitze)

Halicar Salbe N oder Creme (Cardiospermum)

Hametum Salbe oder Creme (Hamamelis)

Malvenöl WALA (Malva silvestris)

Calendula-Öl oder Olivenöl - vor dem Auftragen im Verhältnis 1:1 mit Wasser mischen

Sonstiges

Ozon-Creme (OxAktiv - www.ozonosan.de)

Eigenblutbehandlung

Homöopathie

Cefabene cystus cpl Amp.
Cystus canadensis oplx Tropfen
Lymphomyosot Amp. oder Tropfen
Cutis comp.
Hepar comp.

Diverses

Ergänzende Maßnahmen

Da hier das Risiko für (systemische) entzündliche Reaktionen erhöht ist, empfiehlt sich die vermehrte Aufnahme von Lebensmitteln mit erwiesenen antientzündlichen Eigenschaften. Am Schluss der Therapieempfehlungen finden Sie eine Tabelle, die bei einer evtl. diesbezüglichen Ernährungsumstellung als Unterstützung dienen kann. Bitte beachten Sie, dass diese Tabelle keinen Anspruch auf Vollständigkeit erhebt.

Zusatzinformationen für weitere angegebene Diagnosen

Infektanfälligkeit

Es besteht eine **reduzierte Infektabwehr**. Dies weist auf zu geringe Aktivitäten des Mukosaimmunsystems hin. Daher ist eine **Mikrobiologische Therapie** hierbei immer eine sinnvolle Behandlungsmaßnahme.

Im akuten Infekt sollte **Symbioflor 1** höher dosiert mit 3 - 4 x tgl. 20 Tropfen eingenommen werden.

Bei Abwehrschwächen und häufigen Infekten unterstützt die Gabe von Zink das Immunsystem.

Wir empfehlen:

Orthomol immun Granulat (Nahrungsergänzungsmittel mit Vitamin A, B-Komplex, C, D und weiteren sowie Mineralstoffen und Spurenelementen)

Dosierung: 1 x tgl. 1 Beutel

Sonstiges:

ParaBiotik

Individuelle mikrobiotabezogene Ernährungsempfehlungen

Mukonutritive Mikrobiota

Förderung Akkermansia muciniphila

Das Wachstum von Akkermansia muciniphila wird durch die Zufuhr resistenter Stärke verbessert. Dazu ist eine tägliche Menge von 10 g für ca. 3 Monate empfehlenswert.

Folgende Nahrungsmittel sind reich an resistenter Stärke:

_ `	Bananen, nicht ganz reif	1 mittelgroße Banane enthält		4,7 g
_	Haferflocken	1/4 Tasse, ungekocht enthält		4,4 g
_	Tiefkühl-Erbsen	1 Tasse, gekocht enthält		4,0 g
_	Weiße Bohnen	½ Tasse, gekocht enthält		3,7 g
_	Linsen	½ Tasse, gekocht enthält		2,5 g
_	Nudeln, abgekühlt	1 Tasse enthält		1,9 g
_	Pellkartoffeln, abgekühlt	1 mittelgroße Kartoffel enthält	0,6-	0,8 g

Alternativ bzw. ergänzend kann resistente Stärke als Nahrungsergänzungsmittel in einer Dosierung von 10 Gramm tgl. für die Dauer von ca. 3 Monaten verabreicht werden:

- Resistente Stärke Typ 3 Pulver (Heidelberger Chlorella): 2 Esslöffel tgl.

Das Wachstum von Akkermansia muciniphila kann außerdem durch die Aufnahme von Lebensmitteln, die insbesondere reich an Polyphenolen sind, gefördert werden:

- rote/blaue Trauben
- Aroniabeeren
- Granatäpfel, auch als Direktsaft
- Grünkohl
- Rotkohl
- Leinsamen
- Sonnenblumenkerne
- Cranberry, auch als Direktsaft
- Walnüsse
- Beerenobst
- Oregano, Pfefferminze (getrocknet), Salbei, Nelken, Ingwer, Kapern
- Grüner/schwarzer Tee bzw. Hagebutte Hibiskus Tee (lange gezogen)

Als polyphenolhaltige Nahrungsergänzungsmittel kommen ergänzend Traubenkernmehl oder Cranberry-Kapseln ohne Zucker (400 mg; 2 x 1 Kapsel/Tag) in Betracht.

Förderung der Mukusproduktion

Unabhängig von der prebiotischen Förderung von Akkermansia ist es empfehlenswert **zusätzlich** für einen Zeit von ca. 3 Monaten pasteurisierte Akkermansia muciniphila in die Therapie mit aufzunehmen. Diese sind zwar nicht mehr vermehrungsfähig, haben aber als so genanntes Postbiotikum nachweislich eine fördernde Wirkung auf die Mucinproduktion und die Produktion von Tight junction-Proteinen. Zudem wirken sie antientzündlich.

Ein geeignetes Produkt ist Probio-Cult AKK 1.

Hinweis:

Die Beachtung bekannter Nahrungsmittelallergien sowie Kohlenhydratintoleranzen oder Histaminunverträglichkeit bleibt von diesen Empfehlungen unberührt.

Ballaststoffabbauende und neuroaktive Mikrobiota

Förderung Lactobacillus plantarum

Die Erhöhung der Anzahl von Lactobacillus plantarum im Darm ist durch die vermehrte Aufnahme u. a. folgender Lebensmittel möglich:

Kefir, Sauerkraut, in Salzlake eingelegte Oliven, gesalzene Essiggurken.

Außerdem durch folgende Lebensmittel, **jeweils in ihrer fermentierten Form**: Mais, Sorghum, Hirse, Reisnudeln, Bohnen.

Eine Auswahl weiterer fermentierter Lebensmittel finden Sie bei Primal Life UG unter der Internetadresse <u>www.fairment.de</u>. sowie bei completeorganics <u>www.completeorganics.de</u>

Alternativ bzw. ergänzend kann bei Erwachsenen und Kindern ab 3 Jahren verabreicht werden:

- Innovall RDS oder
- Syxyl Probio-Cult i3.1

Dosierung: 1 Kapsel täglich für 3 Monate

Die Kapseln können bei Bedarf geöffnet werden, für Kinder empfehlen wird die halbe Dosierung.

Mit freundlichen Grüßen

				-	
* Shivappa N et al.: Designing and developing a literature-derives, population-based dietary inflammatory index; Public Health Nutrition 2013: 17(8): 1689-6	Designing and develop ory index; Public Health	* Shivappa N et al.: dietary inflammat	1 EL Sojasauce: 2-3 mg 1 Tasse¹ Miso-Suppe: 15-25 mg 1 Tasse¹ Tempeh: 30-40 mg 1 EL Sojamehl: 10-15 mg	1,2 mg	Isoflavone
	-250 ml Volumen	1: 1 Tasse: ca. 240-250 ml Volumen 2: EPA und DHA 3: ALA	1 mittelgroße Zwiebel: 1-2 mg 1 Zehe roher Knoblauch: 2-3 mg 1 EL getrockneter Thymian: 1-2 mg	1,55 mg	Flavone
täglichen Mindestzufuhr, um antiinflammatorische Effekte zu erzielen. Kombinatione Lebensmittel sind möglich und sinnvoll.	ufuhr, um antiinflammatunöglich und sinnvoll.	täglichen Mindestzufuhr, um antiinflamr Lebensmittel sind möglich und sinnvoll.	1 Teebeutel: 1–2 g	1,69 g	Grü./schw. Tee
Die aufgeführten Lebensmittel-Inhaltsstoffe besitzen erwiesenermaßen ein hohes Antiinflammatorisches Potenzial. Wir empfehlen eine entsprechende Ernährungsum Iung bzw. Nahrungsergänzung. Die aufgeführten Mengen entsprechen der empfohle	sbensmittel-Inhaltsstoffe les Potenzial. Wir empfr sergänzung. Die aufgefi	Die aufgeführten Le Antiinflammatorisch	1 EL Leinsamen, gemahlen: 2,3 g ³ 2 EL Chiasamen, getrocknet: 3,6 g ³ 1 Tasse ¹ Sojabohnen, gekocht: 1,0 g ³		
1 EL Gelbwurz, frisch, gerieben: 15-30 i			100 g Wildlachs, gekocht: 2,5 g²	1,06 g	Omega-3-FS
1 TL Kurkuma-Pulver: 200 mg 1Tasse¹ Kurkuma-Tee: 50-100 mg	533,6 mg	Curcumin	100 g Spinat, gekocht: 79 mg 30g Mandeln: 76 g		
1 EL Weizenkeimöl: 20 mg 1 Tasse¹ Spinat, gekocht: 6,7 mg ½ Avocado: 2 mg 28 g Mandeln, geröstet: 7,3 mg		3	30g Kürbiskerne: 169 mg 30g Sonnenblumenkerne: 90 mg 1 mittelgroße Avocado: 58 mg 1 Tasse¹brauner Reis, gekocht: 86 mg	310,1 mg	Magnesium
28 g Sonnenblumenkerne: 7,3 mg	8,73 mg	Vitamin E	5	59 g	Ingwer
1 Eigelb: 1-2 μg 100 g eingelegter Hering: 3-5 μg			1 Zehe: 3 – 8 g	4,35 g	Knoblauch
100g Lachs, gegrillt: 13-25 µg 100 g Thunfisch i. Wasser, konserv.: 5- 1 Tasse ¹ Shiitake-Pilze: 5 µg	6,3 µg	Vitamin D	1 Tasse Schwarze bohiter yek. 15 y 1 Tasse ¹ Linsen, gekocht: 15 g 1 Tasse ¹ Himbeeren: 8 g		
1 Tasse¹ Paprikastreifen, roh: 95 g 1 Kiwi, mittelgroß: 71 mg ½ Tasse¹ Brokkoli, gekocht: 50 mg 1 Orange, mittelgroß: 70 g	118,2 mg	Vitamin C	1 Tasse¹ Haferflocken: 4 g 2 Scheiben Vollkornbrot: 4 g 1 Tasse¹ Vollkornreis: 4 g 1 Tasse¹ Kichererbsen gekocht: 12 g	18,8 g	Ballaststoffe
20-25 g Rinderleber: 980 RE 150 g Süßkartoffel: 1.200 RE 2 Karotten, mittelgroß, roh: 1.000RE 1 Tasse ¹ Kürbis, gekocht: 2.000 RE	983,9 Retinoäquivalente	Vitamin A	100 g Süßkartoffel, gekocht: 8.500 μg 100g Karotten, roh: 8.300 μg 100g Mangold, gekocht: 23.000 μg 100g Aprikosen, getrocknet: 2.800μg 100g rote Paprika, roh: 3.000 μg	3.718 µg	Beta-Carotene
Gehalt in ausgewählten Lebensmitteln (Durchschnittswerte)	Antientzündliche tgl. Zufuhrmenge*	Antientzündlicher Stoff	Gehalt in ausgewählten Lebensmitteln (Durchschnittswerte)	indliche irmenge*	Lebensmittel Inhaltsstoff

Curcumin	Vitamin E	Vitamin D	Vitamin C	Vitamin A	Antientzündlicher Stoff
533,6 mg	8,73 mg	6,3 µg	118,2 mg	983,9 Retinoäquivalente	Antientzündliche tgl. Zufuhrmenge*
1 TL Kurkuma-Pulver: 200 mg 1Tasse¹ Kurkuma-Tee: 50-100 mg 1 EL Gelbwurz, frisch, gerieben: 15-30 mg	28 g Sonnenblumenkerne: 7,3 mg 1 EL Weizenkeimöl: 20 mg 1 Tasse¹ Spinat, gekocht: 6,7 mg ½ Avocado: 2 mg 28 g Mandeln, geröstet: 7,3 mg	100g Lachs, gegrillt: 13-25 μg 100 g Thunfisch i. Wasser, konserv.: 5-7 μg 1 Tasse¹ Shiitake-Pilze: 5 μg 1 Eigelb: 1-2 μg 100 g eingelegter Hering: 3-5 μg	1 Tasse¹ Paprikastreifen, roh: 95 g 1 Kiwi, mittelgroß: 71 mg ½ Tasse¹ Brokkoli, gekocht: 50 mg 1 Orange, mittelgroß: 70 g	20-25 g Rinderleber: 980 RE 150 g Süßkartoffel: 1.200 RE 2 Karotten, mittelgroß, roh: 1.000RE 1 Tasse ¹ Kürbis, gekocht: 2.000 RE	Gehalt in ausgewählten Lebensmitteln (Durchschnittswerte)

ntiinflammatorisches Potenzial. Wir empfehlen eine entsprechende Ernährungsumstelge bzw. Nahrungsergänzung. Die aufgeführten Mengen entsprechen der empfohlenen glichen Mindestzufuhr, um antiinflammatorische Effekte zu erzielen. Kombinationen der bensmittel sind möglich und sinnvoll.

- 1 Tasse: ca. 240-250 ml Volumen EPA und DHA

- Shivappa N et al.: Designing and developing a literature-derives, population-based dietary inflammatory index; Public Health Nutrition 2013: 17(8): 1689-6